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Abstract – The use of computer aided systems 
is a common tool to solve the problem of process 
selection, cost and time estimation. Although many 
RM selection systems have appeared over time, 
none of them performs the selection task including 
concurrent factors such as cost, materials and 
technical feasibility. The RM evaluation 
method proposed herein splits the selection 
factors into: technical, economical and 
materials assessment. It makes use of matrix 
algebra and a number of Artificial 
Intelligence (AI) tools such as fuzzy logic, 
neural network modelling and expert 
systems, which are implemented in order to 
allow for more appropriate qualitative 
criteria for RM selection. A pilot application 
developed in MatLab is presented in order to 
illustrate the interaction between the 
different modules and to show the effect of 
the respective AI method on the final results 
according to the studied case. 
  

Keywords – RM Process Selection, Cost 
Estimation 
 
 

I. INTRODUCTION 
 

The Rapid Manufacturing Advice System 
(RAMDS) presented herein is intended to 
‘recommend’ the most appropriate route for 
creating a final fully-functional part through 
additive manufacture. The main difference with 
previous selection systems consists in the 
concurrent evaluation of several manufacturing 
techniques from a set of initial user defined 
input parameters. The final goal is not the 
selection of prototyping processes, but the 
assessment of RM alternatives as feasible 
manufacturing options for end-use parts. This 
requires a series of steps in order to assure the 
feasibility of the system’s proposal. 
 
 

II. THE SYSTEM’S ARCHITECTURE 
 

The RMADS architecture is comprised of 3 
modules working together with data extracted 
from two main databases to support the decision 
making task (Figure 1). The model is based on 
an object-oriented methodology [1] i.e. it is 
capable of working with independent modulus 

performing event-driven calculations according 
to user selection. The system is comprised of 
three main modules which can be executed 
independently to obtain separate results: General 
design requirements, Costs assessment and 
Materials selection module.  
 

 
Figure 1. The RMADS system architecture 

 
A. Module 1. General design requirements 
 

Starting form a series of parameters divided 
in 4 groups: Geometry, Appearance, Functional 
and Mechanical requirements (Figure 2) each 
group contains a number of parameters which 
are processed differently according to their type: 
 
 Quantitative data (Q): This data is processed 
by means of an expert rule base for each 
parameter. It is explicitly requested to the user 
in a numeric form or by the selection of precise 
preferences, for instance the maximum service 
temperature, which is then contrasted against the 
materials database for screening. 
 

 
Figure 2. Grouping of the considered parameters 

 
 Normalized qualitative criteria (NQ): For 
attributes of this type it is preferred to assign 
linguistic terms in order to generalize and 
appropriately represent this imprecise data for 
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selection. These linguistic terms are then 
converted to fuzzy numbers following the 
procedures described on Table 1. 
 

TABLE 1 
LINGUISTIC VARIABLES AND CORRESPONDING FUZZY 

NUMBERS 

Corrosion 
resistance 

Wear 
resistance 

Fuzzy number 
Defuzz 
value 

Good High A1= (0.6, 1, 1) 0.867 

Average Average A2= (0.1, 0.5, 0.9) 0.5 

None Low A3= (0,0, 0.5) 0.166 

 
 Individual qualitative data (IQ): This type of 
input information is called “individual” since it 
is not possible to apply uniform linguistic terms 
and the same membership function for each 
parameter as in the previous case. This criterion 
affects specifically to: Surface roughness, 
Tolerances, Min section Thickness and other 
qualitative parameters, therefore for each 
parameter a different fuzzy membership must be 
established. 
 
B. Module 2. Economic assessment 
 

Once a number of RM processes have 
successfully passed the previous stage, cost 
assessment is undertaken. This module exploits 
up to date knowledge on Artificial Neural 
Networks (ANN) for cost estimation, in addition 
to previously developed parametric models, [2, 
3] to get an approximate part cost for each 
additive technology.  

According to existing parametric time-
estimation models, input data should correspond 
to simple geometrical variables (normally 3 to 
5). Early studies on RP build-time estimation 
were based on the total scan length and laser 
speed, while more recent models calculate time 
as a function of part volume, height and surface 
area [4] or considering also the part bounding-
box volume. For this system, in order to design 
a pilot application only two RM processes were 
modelled by ANNs: SLS and SLM. To identify 
the most useful input parameters for SLS and its 
derivate technologies, a series of correlation 
analysis were performed for a number of 
attributes. From this analysis three input 
parameters were selected namely: z height, part 
volume, and bounding box volume.  

It is assumed that since the principle of 
additive fabrication of SLS is also used for 
SLM, the selection of the ANN architecture 
should be similar. The adopted learning 
algorithm is the Levenberg-Marquardt, as it is 
often a more efficient alternative to steepest 
ascent algorithm and also faster in converging 
[5]. A topology of 3 input nodes and one output 
node has been adopted, however in order to 
define the best performance, different 

configurations from 1 to 3 hidden layers were 
tested. 

The maximum error found during the 
research is 15% which denotes a clear potential 
for the ANN-based method to be extrapolated to 
different RM processes. Figure 3 shows a 
general scheme of the calculations performed 
through the costing module. 

 

 
Figure 3. The Economic assessment scheme 

 
C. Module 3.Materials properties 
 

This module is comprised of an expert 
system linked to relational databases in order to 
show feasible materials for the intended 
application and depending on the properties 
selected by the user (Figure 4). The system also 
displays graphs based on material parameters so 
that the final selection is twofold: graphical and 
rule-based. In order to develop a pilot application 
for selecting materials within the RMADS 
system, a comprehensive compilation of sources 
was undertaken including manufacturers data, 
datasheets provided by specialized service 
bureaus and other specialized independent 
sources [6-10]. The RMADS system makes use 
of relational databases in order to perform the 
material selection task.  

A MS Access database has been constructed 
to be used as a Materials repository due to the 
following advantages: 
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1) New materials registries can be added, 
automatically updated and retrieved by an 
ODBC database call from the RMADS system 
2) New material properties can be added 
making it easier to add new constraints to the 
code 
3) The data stored in Ms Access can be easily 
exported to other graphing software such as MS 
Excel. 

 
 

Figure 4. The materials selection scheme 

 
 

III CASE STUDY  
 

The Coin-Classifying Machine is a project 
developed at the CDEI Centre; the objective was 
to develop a universal and modular coin-
classifying device by means of an 
electromagnetic principle (Figure 5).  

The overall system is internally composed 
of a plastic transporting band which contains 
individual “links” (Figure 6). These are 
independently designed pldastic parts with the 
function of guiding individual coins along the 
path of the transport band. For this purpose the 
links incorporate a number of geometrical 
features to be highlighted such as undercuts, 
hidden channels and re-entrant elements.  

According to the part specifications, the 
materials to be applied must fulfil the following 
conditions: 

 High Dimensional precision 
 Lightweight 
 Slippery material preferred 
 High impact resistance 
 High repeatability 
 Non conducting material 
 High general mechanical properties 
 High corrosion resistance 

 
Figure 5 General scheme of the CCM machine. Source: 

Patent ES 2158803 [11] 

 
Figure 6. Perspectives of the ‘link’ polymer part 

 
A. Materials Module 
 

Since the main constraints applied to the 
part are material related, the Materials selection 
Module will be firstly executed. The RMADS 
system currently accepts parameters such as: 
Wear resistance, Corrosion resistance, 
Mechanical properties, and other critical 
conditions which are treated as fuzzy numbers 
as defined earlier in this text. 

The preliminary selection includes a rough 
list of materials without applying more 
restrictive factors. For instance the materials 
Castform and Prime Cast which are intended for 
casting process are presented although they are 
not really suitable candidates. While an 
experienced user may know this, it will not be 
evident for or non experienced designers, 
therefore further analysis must be undertaken. 

As the wear resistance and overall 
mechanical properties are important for the final 
design, the Graph display menu at the upper 
right cornet is activated by selecting the Wear-
resistance/Tensile strength graph as shown on 
Figure 7. By analyzing this graph it is possible 
to observe how “in theory” the best propertie- 
relationship corresponds to the Windform series 
of materials followed by non reinforced PA 
polymers.  

This however may open the debate on 
material properties: How does the SLS process 
behave with custom-made, fibre reinforced, 
carbon-filled tailored powders? This may be 
only responded through experimentation. The 
following chart (Table II) shows the theoretical 
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values for the Tensile Strength (MPa) for the 
originally considered materials and the RM 
materials that resulted from the previous stage. 
It is evident that engineered thermoplastics still 
yield significant advantages versus laser 
sintering powders however the designer has the 
last word over the minimum-enough Tensile 
Strength necessary to perform the task. 

 
TABLE II. 

 TENSILE STRENGTH VALUES FOR POWDER BASED AND 
ENGINEERING THERMOPLASTICS 

RM material Tensile 
strength 
(MPa) 

Injection Moulding 
material 

Tensile 
strength 
(MPa) 

Windform XT 77 PA 66 (Filled) 117 
PA 66 72 POM (25% glass filled) 110 
Windform FX 48.9 PA 66 unfilled 62 
PA 3200 GF 48 PE (20-30% glass 

filled) 
55 

Duraform PA 44 POM(30% carbon fibre) 51.54 

 

 
Figure 7 Materials selection module and the comparison 

graph being displayed 

 
Being the reinforced Polyamides for 

Selective Laser Sintering the best theoretical 
option, it is interesting to apply additional 
factors to the screening process. Since cost is 
considered as a restricting factor, a maximum 
cost of 100 Є/kg is applied, hence reducing the 
list to four alternatives. Also the parameter 
“critical” is activated since the mechanical 
response of the studied element would not result 
in catastrophic failure but would influence in the 
mal-functioning of the overall system. 

While mechanical properties seem to be 
superior for Windform XT, there is no available 
data regarding absorptivity levels. The same is 
true for some of the other RM materials, 
therefore it must be clarified that the results 
provided by the RMADS system will be on the 
basis on theoretical information available from 
materials manufacturers and by no means will 
they replace functional testing and user 
experience. 
 
 

B. Costing module 
 

Once the most suitable material has been 
deteted it is propoer to proceed to the economic 
comparison among different RM technologies. 
This is done by activating the corresponding 
process on the RMADS costing interface. From 
there it is possible to see, how for different 
batch sizes the SLS remains the most 
competitive alternative (Figure 8).  

After this analysis it is possible to foresee 
the economic alternative of this technology 
versus other processes such as Injection 
moulding. Consider an injection mould cost of 
25,000Є. This is a conservative cost since the 
intended mould would include movable ejector 
pins and a highly resistant base material to 
withstand the abrasion of fibre reinforced 
thermoplastics. 

The following graph (Figure 9) show the 
cost comparison between the Injection moulding 
process and its SLS counterpart where the 
approximate break-even point is located around 
20,000 parts, that is, from low to mid-volume 
batches.  

 
a) 

 
b) 

 
c) 
 
Figure 8. Evolution of cost per part for different batch sizes: 

a) 100, b) 1000 c) 3000 

 
C. General requirements module 
 

The following figure (Figure 10) illustrates 
how the different queries on the General Design 
Requirements module have been selected, in 
order to assess the feasibility of RM 
technologies. 

With this conclusion it can be established 
that from the competing processes SLS is 
technically feasible, cost effective and provides 
similar material properties to those provided by 
the injected polymers.  

The next step should be a prototype test 
under functional conditions during repetitive-
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prolonged cycles in order to validate the 
viability of this solution. 
 

Figure 9. Break-even graph for Injection moulding vs. 
Selective Laser Sintering. (up to 20,000 units) 

 

 

 

 

 

 
Figure 10. Design parameters requested by the RMADS 
system and the final process comparison chart. 

 

IV. CONCLUSIONS 
 

This research proposed an integrated RM 
selection system that includes an expert system, 
a fuzzy inference engine and Neural Network 
modelling as well as two databases: materials 
and process capabilities, in order to support 
quantitative and qualitative data to be entered by 
the user. 

It was illustrated how with the interaction 
between those Artificial Intelligence techniques 
it is possible to build an intelligent environment 
for the assessment of RM methods as feasible or 
un-feasible manufacturing alternatives. This is a 
valuable aid specially for users with little or no 
previous knowledge of additive manufacturing 
methods. 
 

This pilot application currently supports 
eight RM technologies and their respective 
machines and manufacturers; however the 
model can be easily modified and databases 
expanded in order to become a more 
comprehensive system, which is the objectiveof 
further research. 
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